Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-aminopyrimidine- κN^1)diaquadinitrato- κO ; $\kappa^2 O$,O'-cadmium(II) monohydrate

Xi-Shi Tai,* Yi-Min Feng and Lin-Tong Wang

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: taixishi@lzu.edu.cn

Received 17 January 2008; accepted 8 March 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.030; wR factor = 0.079; data-to-parameter ratio = 16.0.

In the title compound, $[Cd(NO_3)_2(C_4H_5N_3)_2(H_2O)_2]\cdot H_2O$, the Cd atom is seven-coordinated by two 2-aminopyrimidine molecules, two water molecules, one bidentate nitrate anion and one monodentate nitrate anion. A network of $N-H\cdots O$, $N-H\cdots N$ and $O-H\cdots O$ hydrogen bonds helps to consolidate the crystal structure.

Related literature

For related literature, see: Cui et al. (2003).

Experimental

Crystal data

 $[Cd(NO_3)_2(C_4H_5N_3)_2(H_2O)_2] \cdot H_2O$ $M_r = 480.69$ Monoclinic, $P2_1/c$ a = 13.451 (2) Å b = 7.8692 (14) Å c = 16.699 (3) Å $\beta = 101.330$ (2)°

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) T_{min} = 0.519, T_{max} = 0.662 V = 1733.2 (5) Å³ Z = 4Mo K α radiation $\mu = 1.32$ mm⁻¹ T = 298 (2) K 0.57 × 0.47 × 0.34 mm

9748 measured reflections 3771 independent reflections 3209 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.079$ S = 1.043771 reflections 236 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.83 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.99 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1 Selected bond lengths (Å).

Cd1-O7	2.3009 (19)	Cd1-O4	2.407 (2)
Cd1-O8	2.335 (2)	Cd1-O2	2.512 (2)
Cd1-N1	2.361 (3)	Cd1-O1	2.640 (3)
Cd1-N4	2.399 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdots O5^{i}$	0.86	2.29	3.105 (4)	158
N3−H3 <i>B</i> ···O7	0.86	2.10	2.945 (4)	167
N6−H6A···N5 ⁱⁱ	0.86	2.20	3.054 (4)	170
$N6 - H6B \cdot \cdot \cdot O2$	0.86	2.19	2.931 (4)	144
$N6-H6B\cdots O3^{iii}$	0.86	2.52	3.171 (4)	133
$O7 - H7A \cdots O9^{iv}$	0.85	1.94	2.787 (3)	178
$O7 - H7B \cdots O9^{v}$	0.85	1.87	2.724 (3)	178
$O8-H8A\cdots O3^{vi}$	0.85	1.97	2.820 (3)	176
$O8 - H8B \cdot \cdot \cdot O3^{iii}$	0.85	2.09	2.936 (3)	176
$O9-H9A\cdots O5^{iv}$	0.85	2.44	3.255 (3)	162
$O9-H9A\cdots O7^{iv}$	0.85	2.28	2.787 (3)	119
$O9-H9B\cdots O6^{vii}$	0.85	1.99	2.809 (4)	161

Symmetry codes: (i) -x, -y, -z; (ii) -x + 1, -y, -z + 1; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x, -y + 1, -z + 1; (v) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) x, y + 1, z; (vii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (20671073), the National Natural Science Foundation of Shandong, the Science and Technology Foundation of Weifang and Weifang University for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2693).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cui, Y., Ngo, L. H., White, P. S. & Lin, W. B. (2003). *Inorg. Chem.* 42, 652–660. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supplementary materials

Acta Cryst. (2008). E64, m537 [doi:10.1107/S1600536808006521]

Bis(2-aminopyrimidine- κN^1)diaquadinitrato- κO ; $\kappa^2 O$,O'-cadmium(II) monohydrate

X.-S. Tai, Y.-M. Feng and L.-T. Wang

Comment

As part of the ongoing studies (Cui *et al.*, 2003) of the coordination chemistry of Cd(II) ion, we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The Cd atom in (I) is seven-coordinate with two N-donor 2-aminopyrimidine molecules, two water molecules and one bidentate NO_3^- and one monodentate NO_3^- ions (Table 1). The coordination polyhedron around Cd is a distorted pengonal bipyramidal with the N atoms in the axial positions [N1—Cd1—N4 = 164.13 (9)°]. The dihedral angle between the aromatic ring planes is 33.76 (17)°.

A network of N-H…O, N-H…N and O-H…O hydrogen bonds (Table 2) helps to establish the structure of (I).

Experimental

A solution of 0.5 mmol C $d(NO_3)_2 \cdot 4H_2O$ in 10 ml 95% ethanol was added to a solution of 1.0 mmol 2-aminopyrimidine in 10 ml e thanol at room temperature. The mixture was refluxed for 2 h with stirring, then the resulting precipitate was filtered, washed, and dried *in vacuo* over P₄O₁₀ for 48 h. Colourless blocks of (I) were recrystallized from methanol at room temperature.

Refinement

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, O—H = 0.82 Å, N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(\text{methyl C})$. Some short H···H contacts arise from this geometrical placement scheme and the positions of the water H atoms should be regarded as less certain.

Figures

Fig. 1. The molecular structure of the complex ion in (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. Hydrogen bonds are indicated by double-dashed lines.

Bis(2-aminopyrimidine- κN^1)diaquadinitrato- κO ; $\kappa^2 O$,O'-cadmium(II) monohydrate

Crystal data	
$[Cd(NO_3)_2(C_4H_5N_3)_2(H_2O)_2] \cdot H_2O$	$F_{000} = 960$
$M_r = 480.69$	$D_{\rm x} = 1.842 \ {\rm Mg \ m}^{-2}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

supplementary materials

Hall symbol: -P 2ybc a = 13.451 (2) Å b = 7.8692 (14) Å c = 16.699 (3) Å $\beta = 101.330$ (2)° V = 1733.2 (5) Å³ Z = 4

Data collection

Cell parameters from 6206 reflections	
$\theta = 2.6 - 28.2^{\circ}$	
$\mu = 1.32 \text{ mm}^{-1}$	
T = 298 (2) K	
Block, colourless	
$0.57 \times 0.47 \times 0.34$ mm	

Bruker SMART CCD diffractometer	3771 independent reflections
Radiation source: fine-focus sealed tube	3209 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.046$
T = 298(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -16 \rightarrow 17$
$T_{\min} = 0.519, \ T_{\max} = 0.662$	$k = -10 \rightarrow 9$
9748 measured reflections	$l = -21 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.030$	$w = 1/[\sigma^2(F_0^2) + (0.0376P)^2 + 0.7065P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.079$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.83 \text{ e} \text{ Å}^{-3}$
3771 reflections	$\Delta \rho_{\rm min} = -0.99 \ e \ {\rm \AA}^{-3}$
236 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0486 (12)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.247663 (13)	0.03671 (3)	0.205049 (12)	0.02590 (11)
N1	0.26466 (19)	-0.0114 (4)	0.06883 (17)	0.0349 (6)
N2	0.2023 (2)	-0.0805 (4)	-0.07156 (17)	0.0471 (7)
N3	0.10954 (19)	-0.1429 (4)	0.02583 (17)	0.0441 (7)
H3A	0.0637	-0.1851	-0.0122	0.053*
H3B	0.1010	-0.1433	0.0755	0.053*
N4	0.26970 (18)	0.0332 (3)	0.35116 (16)	0.0326 (6)
N5	0.3562 (2)	0.0073 (4)	0.49009 (17)	0.0452 (7)
N6	0.4438 (2)	-0.0069 (5)	0.38605 (19)	0.0649 (11)
H6A	0.4983	-0.0206	0.4223	0.078*
H6B	0.4468	-0.0050	0.3351	0.078*
N7	0.36446 (17)	-0.2853 (3)	0.22553 (16)	0.0343 (6)
N8	0.10409 (17)	0.3297 (3)	0.14881 (17)	0.0349 (6)
01	0.27101 (15)	-0.2961 (4)	0.21618 (17)	0.0569 (7)
O2	0.40409 (16)	-0.1442 (3)	0.21968 (15)	0.0416 (5)
O3	0.41920 (17)	-0.4123 (3)	0.2418 (2)	0.0610 (8)
O4	0.16425 (16)	0.3041 (3)	0.21572 (16)	0.0496 (6)
05	0.0921 (2)	0.2158 (3)	0.09573 (16)	0.0580 (7)
O6	0.0575 (2)	0.4627 (3)	0.13678 (18)	0.0554 (7)
07	0.09014 (14)	-0.0842 (3)	0.19628 (13)	0.0323 (5)
H7A	0.0430	-0.0155	0.2014	0.039*
H7B	0.0838	-0.1732	0.2236	0.039*
08	0.37736 (15)	0.2381 (3)	0.21821 (16)	0.0471 (6)
H8A	0.3866	0.3445	0.2246	0.056*
H8B	0.4348	0.1893	0.2293	0.056*
09	0.06716 (14)	0.8659 (3)	0.78566 (13)	0.0373 (5)
H9A	0.0160	0.8574	0.8083	0.045*
H9B	0.0501	0.9217	0.7415	0.045*
C1	0.1937 (2)	-0.0771 (4)	0.00777 (19)	0.0346 (7)
C2	0.2866 (3)	-0.0177 (5)	-0.0896 (2)	0.0549 (10)
H2	0.2937	-0.0173	-0.1439	0.066*
C3	0.3639 (3)	0.0467 (5)	-0.0314 (3)	0.0543 (10)
H3	0.4234	0.0880	-0.0448	0.065*
C4	0.3488 (2)	0.0470 (5)	0.0473 (2)	0.0473 (9)
H4	0.3999	0.0902	0.0880	0.057*
C5	0.3540 (2)	0.0118 (4)	0.40915 (19)	0.0347 (7)
C6	0.2691 (3)	0.0261 (5)	0.5134 (2)	0.0506 (9)
H6	0.2684	0.0218	0.5690	0.061*
C7	0.1779 (2)	0.0521 (5)	0.4590 (2)	0.0476 (9)
H7	0.1172	0.0670	0.4768	0.057*
C8	0.1826 (2)	0.0548 (4)	0.3780 (2)	0.0390 (8)
H8	0.1231	0.0721	0.3399	0.047*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02132 (13)	0.02807 (15)	0.02691 (14)	0.00027 (7)	0.00130 (8)	-0.00120 (8)
N1	0.0284 (12)	0.0439 (15)	0.0309 (14)	-0.0010 (11)	0.0027 (10)	-0.0027 (12)
N2	0.0498 (16)	0.0603 (19)	0.0316 (15)	-0.0003 (14)	0.0091 (12)	-0.0078 (15)
N3	0.0411 (14)	0.0565 (19)	0.0344 (14)	-0.0135 (13)	0.0068 (11)	-0.0118 (14)
N4	0.0259 (11)	0.0400 (15)	0.0300 (13)	0.0013 (10)	0.0007 (10)	-0.0027 (11)
N5	0.0373 (14)	0.068 (2)	0.0273 (14)	0.0051 (13)	-0.0008 (11)	-0.0018 (14)
N6	0.0285 (14)	0.135 (3)	0.0289 (15)	0.0179 (16)	-0.0006 (12)	0.0009 (18)
N7	0.0295 (12)	0.0305 (14)	0.0426 (15)	0.0048 (10)	0.0067 (10)	-0.0004 (12)
N8	0.0287 (11)	0.0337 (14)	0.0438 (15)	0.0006 (11)	0.0109 (11)	0.0013 (12)
01	0.0241 (10)	0.0641 (18)	0.083 (2)	0.0028 (11)	0.0109 (11)	0.0149 (15)
02	0.0442 (11)	0.0270 (12)	0.0487 (14)	-0.0064 (9)	-0.0025 (10)	0.0000 (10)
03	0.0417 (13)	0.0315 (13)	0.112 (3)	0.0132 (11)	0.0204 (14)	0.0121 (15)
O4	0.0369 (11)	0.0470 (14)	0.0571 (15)	0.0023 (10)	-0.0096 (10)	0.0069 (12)
05	0.0936 (19)	0.0413 (14)	0.0451 (15)	-0.0025 (13)	0.0288 (14)	-0.0077 (12)
O6	0.0562 (15)	0.0451 (15)	0.0617 (18)	0.0282 (12)	0.0039 (13)	0.0021 (13)
07	0.0255 (9)	0.0335 (11)	0.0384 (11)	0.0016 (8)	0.0069 (8)	0.0045 (10)
08	0.0296 (10)	0.0326 (12)	0.0763 (18)	-0.0078 (9)	0.0038 (10)	-0.0030 (12)
09	0.0358 (10)	0.0433 (13)	0.0343 (11)	0.0034 (9)	0.0103 (9)	0.0027 (10)
C1	0.0370 (15)	0.0350 (17)	0.0305 (15)	0.0058 (12)	0.0033 (12)	-0.0055 (13)
C2	0.059 (2)	0.073 (3)	0.0362 (19)	0.0019 (19)	0.0197 (17)	-0.0019 (19)
C3	0.0426 (19)	0.076 (3)	0.048 (2)	-0.0033 (17)	0.0194 (16)	-0.001 (2)
C4	0.0312 (16)	0.066 (3)	0.044 (2)	-0.0030 (15)	0.0043 (14)	-0.0048 (18)
C5	0.0278 (14)	0.0475 (18)	0.0265 (15)	0.0022 (13)	-0.0005 (12)	-0.0014 (14)
C6	0.050 (2)	0.076 (3)	0.0254 (16)	-0.0004 (18)	0.0075 (15)	-0.0066 (17)
C7	0.0344 (16)	0.072 (3)	0.0373 (18)	-0.0029 (15)	0.0101 (14)	-0.0116 (18)
C8	0.0235 (14)	0.055 (2)	0.0368 (17)	0.0013 (13)	0.0023 (12)	-0.0070 (15)

Geometric parameters (Å, °)

Cd1—07	2.3009 (19)	N7—O3	1.239 (3)
Cd1—O8	2.335 (2)	N7—O2	1.244 (3)
Cd1—N1	2.361 (3)	N8—O6	1.216 (3)
Cd1—N4	2.399 (3)	N8—O5	1.249 (3)
Cd1—O4	2.407 (2)	N8—O4	1.260 (3)
Cd1—O2	2.512 (2)	O7—H7A	0.8500
Cd1—O1	2.640 (3)	O7—H7B	0.8500
N1—C4	1.335 (4)	O8—H8A	0.8500
N1—C1	1.355 (4)	O8—H8B	0.8501
N2—C2	1.324 (5)	О9—Н9А	0.8500
N2—C1	1.353 (4)	О9—Н9В	0.8500
N3—C1	1.332 (4)	C2—C3	1.373 (6)
N3—H3A	0.8600	С2—Н2	0.9300
N3—H3B	0.8600	C3—C4	1.370 (5)
N4—C8	1.345 (4)	С3—Н3	0.9300
N4—C5	1.349 (4)	C4—H4	0.9300

N5—C6	1.315 (4)	С6—С7	1.390 (5)
N5—C5	1.346 (4)	С6—Н6	0.9300
N6—C5	1.347 (4)	С7—С8	1.366 (5)
N6—H6A	0.8600	С7—Н7	0.9300
N6—H6B	0.8600	С8—Н8	0.9300
N7-01	1 239 (3)		0.7000
07 Cd1 08	161 47 (8)	06 N8 05	120.7(3)
07 - Cd1 - 03	07.74 (8)	06 N8 04	120.7(3) 120.3(3)
$O_{1} = Cd_{1} = N_{1}$	97.74 (8) 80.28 (0)	05 N8 04	120.3(3)
03— $cd1$ — $N1$	89.28 (9) 90.22 (9)	N7 01 Cd1	119.0(3)
$O_{}Cd_{}N4$	69.55 (6) 89.25 (0)	N7_02_01	92.35(19)
Va—Cd1—N4	88.55 (9) 1(4.12 (0)	$N/-O_2$ -CdI	96.01(10)
$N_1 = Cd_1 = N_4$	104.13 (9)		107.0(2)
0^{-1}	85.94 (8)		115.5
08—Cd1—04	/5.54 (8)		119.7
NI-CdI-O4	110.25 (9)	H/A - O/-H/B	108.3
N4—Cd1—O4	84.32 (9)	CdI—O8—H8A	140.2
07—Cd1—O2	121.01 (7)	Cd1—O8—H8B	110.1
08—Cd1—O2	77.26 (8)	H8A—O8—H8B	108.3
N1—Cd1—O2	76.42 (8)	Н9А—О9—Н9В	108.8
N4—Cd1—O2	87.76 (8)	N3—C1—N2	117.0 (3)
O4—Cd1—O2	151.84 (7)	N3—C1—N1	118.8 (3)
O7—Cd1—O1	71.92 (7)	N2—C1—N1	124.2 (3)
O8—Cd1—O1	126.19 (7)	N2—C2—C3	122.7 (4)
N1—Cd1—O1	82.89 (9)	N2—C2—H2	118.6
N4—Cd1—O1	85.87 (9)	С3—С2—Н2	118.6
O4—Cd1—O1	155.85 (7)	C4—C3—C2	116.4 (3)
O2—Cd1—O1	49.10 (6)	С4—С3—Н3	121.8
C4—N1—C1	116.0 (3)	С2—С3—Н3	121.8
C4—N1—Cd1	116.9 (2)	N1—C4—C3	123.4 (3)
C1—N1—Cd1	126.8 (2)	N1—C4—H4	118.3
C2—N2—C1	117.2 (3)	C3—C4—H4	118.3
C1—N3—H3A	120.0	N5-C5-N6	116.1 (3)
C1—N3—H3B	120.0	N5	125.0 (3)
H3A—N3—H3B	120.0	N6C5N4	118.9 (3)
C8—N4—C5	116.1 (3)	N5—C6—C7	123.1 (3)
C8—N4—Cd1	113.3 (2)	N5—C6—H6	118.4
C5—N4—Cd1	130.5 (2)	С7—С6—Н6	118.4
C6—N5—C5	116.7 (3)	C8—C7—C6	116.3 (3)
C5—N6—H6A	120.0	С8—С7—Н7	121.9
C5—N6—H6B	120.0	С6—С7—Н7	121.9
H6A—N6—H6B	120.0	N4—C8—C7	122.8 (3)
01—N7—03	121.1 (3)	N4—C8—H8	118.6
01—N7—02	1194(3)	С7—С8—Н8	118.6
03—N7—O2	119 5 (2)		
07 Cd1 N1 C4	178 2 (2)	08 Cd1 02 N7	1721(2)
$O_{1} - Cu_{1} - N_{1} - C4$	1/0.2(2)	$V_0 - Cu_1 - U_2 - N/$	1/2.1(2)
$\cup_0 - \cup_{11} - \cup_{11} - \cup_{4}$	13.4 (3)	$\frac{N1}{C_{1}} = \frac{1}{C_{2}} =$	-93.49(19)
N4 - Cd1 - N1 - C4	-00.0(5)	N4-Cal-O2-N7	85.52 (19)
04—0a1—N1—04	89.7 (3)	04—Ca1—02—N/	156.87 (19)

supplementary materials

O2-Cd1-N1-C4	-61.7 (2)	O1—Cd1—O2—N7	-3.15 (17)
O1-Cd1-N1-C4	-111.3 (2)	O6—N8—O4—Cd1	-175.1 (2)
O7—Cd1—N1—C1	5.2 (3)	O5—N8—O4—Cd1	5.9 (3)
O8—Cd1—N1—C1	-157.6 (3)	O7—Cd1—O4—N8	-65.67 (19)
N4—Cd1—N1—C1	121.0 (3)	O8—Cd1—O4—N8	114.8 (2)
O4-Cd1-N1-C1	-83.3 (3)	N1—Cd1—O4—N8	31.1 (2)
O2-Cd1-N1-C1	125.4 (3)	N4—Cd1—O4—N8	-155.4 (2)
O1-Cd1-N1-C1	75.8 (3)	O2—Cd1—O4—N8	130.22 (19)
O7—Cd1—N4—C8	-32.6 (2)	O1—Cd1—O4—N8	-88.9 (3)
O8—Cd1—N4—C8	129.0 (2)	C2—N2—C1—N3	-178.9 (3)
N1—Cd1—N4—C8	-149.4 (3)	C2—N2—C1—N1	1.2 (5)
O4—Cd1—N4—C8	53.4 (2)	C4—N1—C1—N3	177.6 (3)
O2-Cd1-N4-C8	-153.7 (2)	Cd1—N1—C1—N3	-9.4 (4)
O1-Cd1-N4-C8	-104.5 (2)	C4—N1—C1—N2	-2.4 (5)
O7—Cd1—N4—C5	146.7 (3)	Cd1—N1—C1—N2	170.6 (2)
O8—Cd1—N4—C5	-51.7 (3)	C1—N2—C2—C3	0.9 (6)
N1—Cd1—N4—C5	29.8 (5)	N2—C2—C3—C4	-1.5 (6)
O4—Cd1—N4—C5	-127.3 (3)	C1—N1—C4—C3	1.7 (5)
O2-Cd1-N4-C5	25.6 (3)	Cd1—N1—C4—C3	-172.0 (3)
O1-Cd1-N4-C5	74.7 (3)	C2—C3—C4—N1	0.1 (6)
O3—N7—O1—Cd1	173.5 (3)	C6—N5—C5—N6	179.7 (4)
O2—N7—O1—Cd1	-5.5 (3)	C6—N5—C5—N4	-0.3 (5)
O7—Cd1—O1—N7	-178.1 (2)	C8—N4—C5—N5	1.3 (5)
O8—Cd1—O1—N7	-2.6 (2)	Cd1—N4—C5—N5	-177.9 (2)
N1-Cd1-01-N7	81.30 (19)	C8—N4—C5—N6	-178.6 (3)
N4—Cd1—O1—N7	-87.48 (19)	Cd1—N4—C5—N6	2.1 (5)
O4—Cd1—O1—N7	-153.7 (2)	C5—N5—C6—C7	-1.0 (6)
O2-Cd1-O1-N7	3.13 (17)	N5—C6—C7—C8	1.0 (6)
O1—N7—O2—Cd1	5.8 (3)	C5—N4—C8—C7	-1.2 (5)
O3—N7—O2—Cd1	-173.2 (3)	Cd1—N4—C8—C7	178.1 (3)
O7—Cd1—O2—N7	-4.5 (2)	C6—C7—C8—N4	0.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H3A···O5 ⁱ	0.86	2.29	3.105 (4)	158
N3—H3B…O7	0.86	2.10	2.945 (4)	167
N6—H6A…N5 ⁱⁱ	0.86	2.20	3.054 (4)	170
N6—H6B…O2	0.86	2.19	2.931 (4)	144
N6—H6B···O3 ⁱⁱⁱ	0.86	2.52	3.171 (4)	133
O7—H7A···O9 ^{iv}	0.85	1.94	2.787 (3)	178
O7—H7B…O9 ^v	0.85	1.87	2.724 (3)	178
O8—H8A···O3 ^{vi}	0.85	1.97	2.820 (3)	176
O8—H8B···O3 ⁱⁱⁱ	0.85	2.09	2.936 (3)	176
O9—H9A···O5 ^{iv}	0.85	2.44	3.255 (3)	162
O9—H9A···O7 ^{iv}	0.85	2.28	2.787 (3)	119
O9—H9B…O6 ^{vii}	0.85	1.99	2.809 (4)	161

Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1; (iii) -x+1, y+1/2, -z+1/2; (iv) -x, -y+1, -z+1; (v) x, -y+1/2, z-1/2; (vi) x, y+1, z; (vii) x, -y+3/2, z+1/2.

